Quality Assessment (QA) PDT

Outline
• Organization
• Activities
• Accomplishments
• Plans
Quality Assessment (QA) PDT

If you can’t verify it – you can’t forecast it!
If you can’t verify it –
you can’t forecast it!

“It is hazardous, and in many ways irrelevant to become entangled with any form or variety of verification schemes. No matter where one stands, one is always in the middle of a lusty controversy. The verification expert and the meteorologist are always ravishing each other.”

--Col. A.C. Holman; BAMS 1947
Why a Verification Program

- Establish an independent assessment group to evaluate the quality of AWRP forecast products.

- Develop new and advanced approaches for aviation forecasts that have never before been verified, and continue to develop improved approaches.

- The development of verification approaches requires research and testing much like the development of aviation forecast products.
QA PDT: Members

Co-Leads
 Jennifer Mahoney and Barbara Brown

Core Members
 Tressa Fowler, Mike Kay, Matt Kelsch, Andy Loughe, Fred Mosher, Agnes Takacs
QA PDT: Organization

• AF and QA split
 – RTVS system development remains in AF PDT
 – Tasks pertaining to verification method development, analysis of results, and AWTT moved to QA PDT

• Tasks in other PDTs will remain in those PDTs for FY03, but will be moved to QA PDT in FY04.
QA PDT: Goals

- Help facilitate the transfer of technology through AWTT.
- Develop and apply appropriate, scientifically and statistically valid verification methods.
- Provide meaningful feedback to forecasters, developers, and managers.
QA PDT: Interactions

- Partnership between FSL and NCAR
- Work closely with other PDTs
 - Aviation Forecasts
 - Turbulence
 - Convective Weather
 - In-flight Icing
 - National Ceiling and Visibility
 - Oceanic Weather
 - Model Development and Enhancement
QA PDT: Interactions

• Participation in activities of various statistical and verification committees
 – AMS Probability and Statistics Committee
 – WWRP Verification Sub-committee
 – MITRE Aviation Verification Committee
• Collaborate with AWC, NWS, other NCAR and FSL divisions, other laboratories, and universities.
QA PDT: Activities

• Develop verification methods for aviation forecasts
 – Workshop on “Making Verification More Meaningful”
 – Collaborations with other verification groups
 – Leverage with other projects (FSL precipitation project; USWRP)

• Support AWTT decisions
 – Intercomparison exercises
 – QA reports

• Provide verification information to users
 – Confidence level information
QA PDT: Accomplishments

Real Time Verification System (RTVS)

Forecast Verification Branch (FVB) is developing a real-time verification system (RTVS) that provides feedback on forecast quality to users, model developers, and managers. FVB also participates in developing and evaluating verification methods.

Operational (tools and methods in the field):
- FSL, RTVS
- AWC RTVS

Experimental (tools and methods in development):
- ACARS-RUC
- AAWU
- CCFP

Reference
- Product Monitor
- Publications
- Contact Us

The information provided on this site is authored by the Real-Time Verification Section (RTVS) and is developed by NWS's Forecast Systems Laboratory (FSL) with funds provided by the FAA Aviation Weather Research Program.

Back to RTVS

AWRP Program Review 19 November 2002
Confidence Level Information

Current Icing Potential (CIP) Performance Statistics:
- Annual, seasonal, and regional
- Similar information for other products (e.g. ITFA) will be included on ADDS.
QA PDT: Accomplishments

Confidence Level Information

DISCRIMINATION
Annual Performance
Skill Index = 80

- High skill
- Low skill

AIRSPACE COVERAGE
Annual Performance

- High skill
- Low skill
QA PDT: Accomplishments

• Submitted technical reports to AWTT Technical Review Panel
 – IIDA/CIP
 – IIFA/FIP
 – ITFA
International Workshop: “Making Verification More Meaningful”

• Goals
 – Bring together verification experts
 – Consider major issues in verification of aviation weather and related forecasts
 – Establish and extend collaborations

• Focus
 – Operational issues (how to make verification relevant)
 – Observations (uncertainty, scaling)
 – Advanced methods (especially for spatial forecasts)
 – Ensemble forecast verification
QA PDT: Accomplishments

“Making Verification More Meaningful”

Participants:

• From 6 countries and all parts of U.S.
• Atmospheric scientists, operational meteorologists, hydrologists, statisticians, mathematicians
• Government laboratories, universities, operations, private consultants
QA PDT: Accomplishments

“Making Verification More Meaningful”

Outcomes:

• A variety of issues identified:
 – Users and operationally-relevant verification
 – Scaling
 – Improved spatial forecast verification approaches
 – Incorporation of observational uncertainty
 – Need for improved education

• New collaborations

• Desire for similar events in the future

Web address: http://www.rap.ucar.edu/research/verification/ver_wkshp1.html
QA PDT: Plans

• Develop and test approaches that address “operationally-relevant” questions.
 – Practically-perfect approach (Brooks et al. 1998)
 – Ebert/McBride (2000) diagnostic approach
 – Object-oriented approach (NCAR, NSSL)
QA PDT: Plans

An “Object-Oriented” Approach

• Identify verification questions that are meteorologically and operationally relevant
• Define precipitation/convective objects and shapes
• Diagnose errors in location, shape, size, timing, etc.
 – Include operationally-relevant attributes, such as location of “gaps” in convection
• Characterize and compare convection within shapes
QA PDT Plans: Example of Object-Oriented approach

Shapes/objects and matching:

Precipitation intensities:
QA PDT: Plans

• Continue technology-transfer activities
 – CIP icing severity for D3 decision
 – FIP for D4 decision

• Begin development of C&V and Oceanic Weather intercomparison activities for D3 decisions in FY04
 – National C&V algorithm
 – Cloud top height
 – Global convective diagnosis
 – Global turbulence forecast

• Continue Convective Weather evaluation activities
 – NCWF 2-h forecast for D3 decision in FY04
AWRP Program Review

Quality Assessment
Product Development Team

Questions?