

Unmanned Aircraft Systems Traffic Management (UTM) SAFELY ENABLING UAS OPERATIONS IN LOW-ALTITUDE AIRSPACE

Dr. Thomas Prevot, Dr. Marcus Johnson, Dr. Joseph Rios, and Dr. Parimal Kopardekar

NASA Ames Research Center - Moffett Field, CA

May 8, 2017

UAS Traffic Management

Goal:

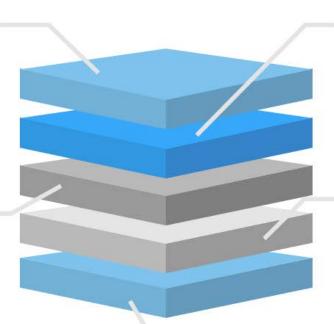
Safely enabling large scale visual and beyond visual line of sight operations in the low altitude airspace

Risk-based approach along four distinct Technical Capability Levels (TCL)

TCL2: *multiple BVLOS, rural*

- \rightarrow Initial BVLOS
- \rightarrow Intent sharing
- \rightarrow Geo-fenced ops

UTM TCL2: Scheduling and Executing Multiple BVLOS Operations



Conflict Alerts

Alert triggered by proximity to other aircraft

Contingency Alerts

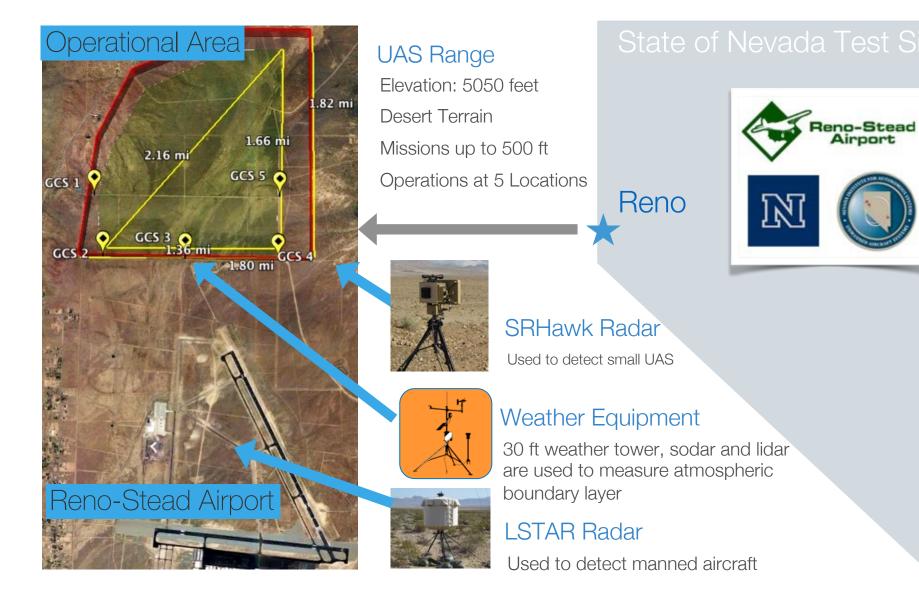
Simulated in-flight emergency reported to the UTM research prototype and relayed to impacted operations

Intruder Alerts

Alert triggered from radar submitted warning regions to UTM research prototype

Flight Conformance Alerts

Alert triggered from departing from operational area and relayed to impacted operations


Priority Operations

Users with special privileges are given priority of the airspace and impacted operations are informed of any conflicts

Scheduling and tracking operations and contingency management

Test Range

TCL 2 Weather-related Observations

Temperature and Air Density Impacts

Nominal Aircraft Endurance

Multi-Rotors: 20-40 minutes Fixed-Wing: 45-200+ minutes Reno-Stead Elevation: 5,050 ft

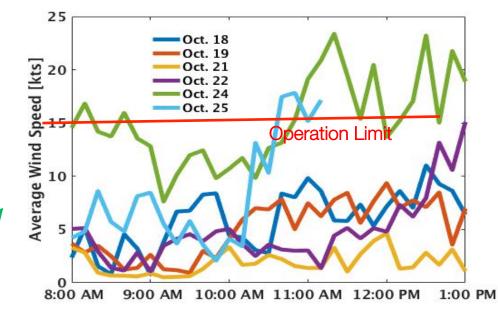
Cool Temperatures Density Altitude: 4,000 ft

Winds: 5-35 knots

Aircraft encountered thermals, microbursts and high winds which resulted in reduced endurance and degraded flight plan conformance

Warm Temperatures Density Altitude: 9,000+ ft

Winds: 5-15 knots


Aircraft experienced substantially shorter endurance

UAS equipment should be evaluated and rated against different operational environments

Locality and Terrain Impacts

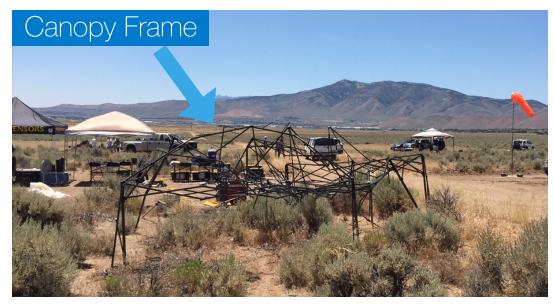
Basin and range topography yielded local environments with observably different wind conditions

Local weather and national forecasts not indicative of observed conditions on site

Ground reports were not indicative of conditions UAS experienced aloft

Ground reports local to GCS location was not indicative of conditions UAS experience while BVLOS

Improvements in weather products are needed to support BVLOS


Other Ground Hazards

Dust devil launched canopy into the air

Rain induced swarms of mating flying ants

Dry climate / hot temperatures caused brush fire

Weather impacts to UAS Traffic Management

Unplanned or **emergency landings** due to **improper UAS testing** in relevant atmospheric conditions can be **hazardous** and cause disruption to other operations

Performance variations of different UAS in given atmospheric conditions should be considered during scheduling and planning

Initial BVLOS should avoid altitude stratification, until improvements in weather products

In the absence of acceptable weather products, atmospheric conditions should be self-reported from GCS and UAS (e.g. UREP)