On the forecasting challenges of the RELAMPAGO observational campaign using an on purpose CRM ensemble with WRF

L. Fita¹ M. Álvarez¹ E. Galanaki⁴ Y. Garcia Skabar² T. M. Giannaros⁴ V. Kotroni⁴ L. McMurdie⁶ J. P. Mulholland³ S. Nesbitt³ P. Salio¹ R. Schumacher⁵

¹CIMA, CONICET-UBA, CNRS UMI-IFAECI, Argentina ²Serv. Meteo. (SMN), Argentina ³Dept. of Atmos. Scie., U. Illinois, USA ⁴NOA-IERSD, Greece ⁵Dpt. of Atmos. Scie., CSU, USA ⁶Dpt. of Atmos. Scie., U. Washington, USA

GEWEX Convection-Permitting Climate Modeling Workshop II, Boulder, 4-6th Sept. 2018

Climatological studies using TRMM data ...

Climatological studies using TRMM data ...

[Zipser et al., 2006, BAMS]

[Houze et al., 2015, Rev. Geophys.]

Climatological studies using TRMM data ...

[Zipser et al., 2006, BAMS]

[Houze et al., 2015, Rev. Geophys.]

... the world **most intense** storms in Argentina!!

RELAMPAGO-CACTI

USA NFS & Dept. Energy funded intense observation campaign over Mendoza and Córdoba in Argentina

RELAMPAGO-CACTI

■ USA NFS & Dept. Energy funded intense observation campaign over Mendoza and Córdoba in Argentina

Remote Sensing of Electrification, Lightning And Meso-scale/micro-scale Processes with Adapative Ground Observations (RELAMPAGO)

Known zones of intense convective phenomena:

[Rasmussen et al., 2014, Geophys. Res. Lett.]

[Schwarzkopf & Rosso, 1982 C I M A 12th Conf. Severe Local Storn CONICET

RELAMPAGO-CACTI

- USA NFS & Dept. Energy funded intense observation campaign over Mendoza and Córdoba in Argentina
- Questions to be addressed by RELAMPAGO-CACTI:

- What are the life cycles and environmental characteristics of deep, organized, high-impact weather-producing storms across this region? How does it act to set the stage for hazardous weather and extremes? (kinematic, thermodynamic, aerosol, land surface, topography)
- What are the physical mechanisms that produce these storms? How do they differ from similar events in the US? What is the predictability of these storms and associated hazards?

RELAMPAGO Institutions, roles, & schedule

Institutions

- US Universities: UIUC, UT, CSU, CU, UW, PSU
- US Institutions: DOE (BNL, PNNL, LBNL), NCAR, CSWR, NOAA, NASA
- AR Universities: Buenos Aires, Córdoba, La Plata, Litoral
- AR Institutions: SMN, CIMA, SINARAME, MinCyT, CITEDEF, INVAP
- BR Universities/Institutions: University of Santa María,
 University of São Paulo, INPE

RELAMPAGO Institutions, roles, & schedule

■ roles in observations

- NSF:
 - Deployment pool, S-PolKa, DOWs, Soundings + Expendables, Mesonet/Pods (CSWR), DIAL LIDAR
 - Non-deployment pool, Hydromet measurements (RAL)
- NASA (US): Disdrometers, Rain gauges, Micro-rain radars, (specital GOES-16 scans?)
- NOAA (US): Lightning mapping array, Field mills (Proposed)
- DOE (US): CACTI AMF-1 (cloud/profiling suite, aerosol measurements), C-Band DP Radar, G-I microphysical and aerosol aircraft)
- SMN (AR): Mobile soundings, Enhancement of operational radiosondes, DSD + rainfall
- SINARAME (AR): C band Radars DP
- INPE (BR): Sao Borgia, Mobile X-Band DP radar,
 Precip/profiling supersite, Lightning mapping array, Stickn
 S-Band DP radars downstream

RELAMPAGO Institutions, roles, & schedule

Schedule
RELAMPAGO - HYDRO
CACTI - EOP
RELAMPAGO - IOP
CACTI - IOP

- Pre-field campaign project design, research, integration
 - RELAMPAGO DryRun 1 (Nov 2017): 2015 Nov.-Dec. cases (1st week), real-time (2nd week)
 - RELAMPAGO DryRun 2 (2018 Sept. 10th, 1 week real-time)
- 2 Societal and governmental engagement (2015-)
- 3 Large multi-agency field campaign + forecasting and nowcasting activities (2018-2019)
 - RELAMPAGO/CACTI IOP: 2018 Nov. 1st Dec 15th 20
- 4 Post-project science (2018 and beyond)

RELAMPAGO IOP

Deployment of instruments

RELAMPAGO IOP

Instruments DOE

DOW

CSWR Mobile Meso-Net

soundings

CONICET

18 containers arrived at Buenos Aires Harbor!!

>70 people involved in IOPs: in-field, forecasters and scientists

RELAMPAGO IOP

Areas under study

Carlos Paz headquarters: morning/night briefings, observers replace

CONICET

Mendoza, Córdoba IOPs aeras

■ Virtual briefing of a field campaign and instrumental deployment

- Virtual briefing of a field campaign and instrumental deployment
- Test of data-sharing and forecast coordination

- Virtual briefing of a field campaign and instrumental deployment
- Test of data-sharing and forecast coordination
- Main scientific focus: convection initiation, severe weather, upscale convective growth, backbuilding, hydrometeors

- Virtual briefing of a field campaign and instrumental deployment
- Test of data-sharing and forecast coordination
- Main scientific focus: convection initiation, severe weather, upscale convective growth, backbuilding, hydrometeors
- Convection permitting WRF ensemble from 6 different institutions: U. Illinois [US] (UI), Servicio Meteorológico Nacional [AR] (Met. Office), Colorado State University [US] (CSU), Centro de Investigaciones del Mar y la Atmósfera [AR] (CIMA 2 runs), National Observatory of Athens [GR] (NOA) - IERSD

- Virtual briefing of a field campaign and instrumental deployment
- Test of data-sharing and forecast coordination
- Main scientific focus: convection initiation, severe weather, upscale convective growth, backbuilding, hydrometeors
- Convection permitting WRF ensemble from 6 different institutions: U. Illinois [US] (UI), Servicio Meteorológico Nacional [AR] (Met. Office), Colorado State University [US] (CSU), Centro de Investigaciones del Mar y la Atmósfera [AR] (CIMA 2 runs), National Observatory of Athens [GR] (NOA) - IERSD

- Virtual briefing of a field campaign and instrumental deployment
- Test of data-sharing and forecast coordination
- Main scientific focus: convection initiation, severe weather, upscale convective growth, backbuilding, hydrometeors
- Convection permitting WRF ensemble from 6 different institutions: U. Illinois [US] (UI), Servicio Meteorológico Nacional [AR] (Met. Office), Colorado State University [US] (CSU), Centro de Investigaciones del Mar y la Atmósfera [AR] (CIMA 2 runs), National Observatory of Athens [GR] (NOA) - IERSD
- 4 different domains, 6 different physics configurations, different forcing (GFS, ERA-Interim, ERA5) and model set-up (4 km, vertical lev., ...)
- 1st week: 5 old 2015 cases, 2nd week real-time (forced by GFS

- 6 Old cases: 48-hour simulations of past strong events (2015 Nov-Dec)
- real-time: 48-hour simulations of 2018 Nov 27th-30th

e.g. Case1: 2015 Nov. 7-9

e.g. Case1: 2015 Nov. 7-9

runs

la: ERA-I, 4km, 40lev UBAsons: GFS, 3km, 60lev smr: GFS, 3.3km, 38lev

obs. soundings from U. Wyoming data portal

- ERA-Interim wetter at low levels than GFS
- Large differences after 24-h forecast

e.g. Case6: 2015 Nov. 18-20

Conv. Init.

courtesy of SMN - SINARAME

Córdoba radar images Full development

Second series of storms

e.g. Case6: 2015 Nov. 18-20

runs

era5-1a: 1a + ERA5
smnphys: 1a + smn
physics

obs. soundings from U. Wyoming data portal

- Not large differences at initial time-step
- Large differences after 24-h forecast

e.g. Case6: 2015 Nov. 18-20 Convective initialization (time at $pr > 0.0001 \ kgm^{-2}s^{-1}$)

1a (ERA-I) 1a (ERA5)

- Different time & locations
- Orographic influence convection triggering
- Similar NW-SE evolutions
- Lower convection with SMN ph

■ Main results:

- Difficulties to get data on time for briefings (only 1-2 local runs available)
- Large spread of forecasts, difficulties to determine instrumental distribution and scientific focus

Main results:

- Difficulties to get data on time for briefings (only 1-2 local runs available)
- Large spread of forecasts, difficulties to determine instrumental distribution and scientific focus

Further Work

- WRF set-up forecasts coordination is necessary
- Optimize data/figures sharing to be on time for briefings
- Development of an ensemble (60 members with GFS ens.)
 with data assimilation (CIMA+SMN) during the campaign and to be keep afterwards as regular forecast
- BAMS article about DryRun exercise currently under preparation
- Getting closer to the campaign !!

Thank you for your attention !!

